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Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through
the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities
at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the
feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime,
where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless
tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate
that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the
kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles.
The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner
to kinetic theory relative to kinetic simulations.

I. Introduction

Magnetic reconnection1,2 is a fundamental process that
rapidly converts plasma magnetic energy to kinetic energy
by breaking and then reconnecting magnetic field lines
embedded in the plasma. It is responsible for particle
transport and energization observed in the solar corona3,4,
magnetosphere5,6, various other astrophysical phenomena7,8,
and many laboratory plasmas9–12. While much insight has
been gained from two-dimensional (2D) studies–see Ref. 13
and the references therein–a complete understanding of recon-
nection requires a fully three-dimensional (3D) treatment.

Kinetic simulations have recently demonstrated that 3D
reconnection in collisionless regimes proceeds through the
formation and interaction of magnetic flux ropes, which are
generated due to growth of tearing instabilities at multiple
resonance surfaces14,15. The subsequent nonlinear interac-
tions of these flux ropes lead to the self-generation of multi-
scale structures and intermittent multi-fractal turbulence16. In
force-free current sheets, both kinetic theory and particle-in-
cell (PIC) simulations suggest that the fastest growing tearing
modes are associated with the resonance surfaces on the edge
of the sheet, and these modes give rise to the most prominent
flux ropes15. These oblique modes are completely suppressed
in 2D studies of reconnection, which have dominated the lit-
erature. Thus, to study the realistic dynamics of reconnecting
current layers, it is critical to move towards 3D simulations.

Since kinetic simulations are intrinsically expensive, it is
desirable to explore the feasibility of reduced two-fluid mod-
els to capture this complex evolution, particularly, in the
strong guide field regimes, where two-fluid models are bet-
ter justified. Previous fluid-modeling efforts in the collision-
less regime primarily focused on Harris sheet geometries with
reduced single or two-fluid MHD models. Hall MHD sim-
ulations with no guide field showed tearing instability over
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a narrow range of oblique angles with the maximum growth
rate corresponding to the resonance layer at the center of the
sheet17. Two-field18,19 and four-field20 simulations of two-
fluid MHD with a guide field reported the coalescence of cur-
rent layers and formation of complex 3D structures includ-
ing vorticity layers due to the combined action of drifting X-
points and mutual attraction of parallel currents. These vor-
ticity layers were found to lead to the formation of secondary
instabilities of the Kelvin-Helmholtz type in both 2D and 3D.
Structures on the order of the electron inertial-scales were ob-
served. Recently, it was shown that the most unstable plas-
moid mode in the constant-ψ regime of reduced MHD is an
oblique mode21.

This paper investigates the dynamics of the collisionless
tearing mode in a force-free current sheet in the large guide
field limit, using a two-fluid description with an ion-to-
electron mass ratio, mi/me = 100. The numerical imple-
mentation is carried out within the HiFi multi-fluid modeling
framework22. The use of the full set of two-fluid equations
provides a natural extension of the Hall and reduced MHD
models of Refs. 17 and 21, and generalizes the two and four-
field models of Refs. 18 and 20. Analytical work that ex-
tends two-fluid tearing theory to oblique modes is presented.
Oblique tearing simulations are run in 2D by rotating the
equilibrium to select the resonant surface of a single oblique
mode. A guide field with the uniform component, bg, as large
as ten times the in-plane field (bg = 1 − 10) is employed.
This range is relevant for many astrophysical23 and labora-
tory plasmas24–27. The linear growth rates are compared to
those from kinetic theory and fully kinetic PIC simulations15,
as well as two-fluid theory. Our results indicate that the most
unstable (fastest growing) modes are oblique for bg ≥ 1, in
agreement with Ref. 15. For bg >> 1, the peak oblique
growth rate significantly exceeds that of the mode whose reso-
nance layer lies at the center of the current sheet (referred to as
the symmetric mode henceforth, since the tearing eigenfunc-
tion is symmetric at this location). Two-fluid theory produces
a flatter oblique spectrum and underestimates the oblique tear-
ing growth rates relative to the non-oblique mode, in a similar
manner to how kinetic theory compares with kinetic simula-
tions.
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While our primary interest in this study is the collision-
less limit, it is necessary to include dissipative effects in the
two-fluid model for reasons of numerical stability and con-
vergence. The dissipative term that influences the tearing in-
stability is hyperresistivity (ηH ) that enters the generalized
Ohm’s law as an artificial electron viscosity term (see sections
II B and III). Since our goal is to compare with collisionless
PIC simulations, we scan ηH for each bg until convergence
of linear growth rates is achieved, which indicates the tran-
sition into the collisionless regime. By incorporating ηH in
the extended two-fluid tearing theory, we provide an analytic
expression in terms of the equilibrium quantities for the crit-
ical ηH below which collisionless tearing takes places. The
resulting theoretical prediction for this transition is consistent
with the two-fluid simulations, justifying the validity of our
conclusions in the collisionless limit. This result is important
because it allows us to select an ηH sufficiently small in order
to compared with collisionless kinetic simulations. The scans
over ηH also indicate that the peak growth rate shifts from an
oblique mode to the symmetric mode when ηH is sufficiently
high, suggesting a stronger suppression of oblique modes with
hyperresistivity.

This article is organized as follows. Section II A is an
overview of the collisionless theory of oblique tearing as pre-
sented in Ref. 15. We present results from the oblique two-
fluid tearing theory as well as the incorporation of hyperre-
sistive dissipation into two-fluid theory in Section II B. The
details of the derivation are contained in the Appendix. Sec-
tion III introduces the two-fluid equations and some details
of the implementation within the HiFi multi-fluid modeling
framework22. Section IV contains the results from 2D two-
fluid simulations of oblique tearing and comparisons to ki-
netic simulations and theory as well as two-fluid theory. The
main conclusions of this work and additional discussion are
presented in Section V.

II. Oblique Tearing Theory

A. Kinetic Theory of Collisionless Tearing

This section reviews some key results from
Refs.15,21, which are critical for the comparisons
shown in this paper. The equilibrium is a force-
free (J(0) × B(0) = 0) current sheet with thickness
2λ. B(0) = B0

[
tanh(z/λ)x̂+

√
b2g + sech2(z/λ)ŷ

]
is the equilibrium magnetic field with magnitude
|B(0)| = B0

√
1 + b2g and J(0) = ∇ × B(0)/µ0 is the

equilibrium current density. The electron β is defined in terms
of the equilibrium quantities as βe = 2µ0nTe/[B

2
0(1 + b2g)],

where Te is the electron temperature and n is ion/electron
plasma density. For all the simulation work presented here,
initial ion and electron temperatures are the same: Ti = Te,
which results in β = 2βe = 2βi.

An oblique mode is a general tearing perturbation with both
in and out-of-plane components, k = kxx̂ + ky ŷ with obliq-
uity θ ≡ tan−1(ky/kx). Such a perturbation (with ky 6= 0)
shifts the location of the resonance layer (k ·B(0) = 0) away
from the center of the sheet (zs = 0) to zs = −λ tanh−1[(1+

b2g)
1/2 sin θ]. This implies that sufficiently large 3D systems

will permit numerous tearing modes growing at multiple res-
onance layers.

Applying the asymptotic analysis of Ref. 28 for k << 1
and k >> 1 to an oblique perturbation yields the following
expression for the tearing drive parameter15,21:

∆′ ≈ 2

kλ2
(1 + b2g tan

2 θ)− 2k, (1)

where k2 = k2x + k2y . Standard matching of inside and out-
side solutions28,29 yields the following linear growth rate from
kinetic theory15

γ

kvTe
≈ d2e∆

′

2
√
πls

[
1 +

√
(me/mi)(Te/Ti)

] ≈ d2e∆
′

2
√
πls

, (2)

where de = c/ωpe is the electron inertial length, ωpe =

(e2ne/meε0)
1/2 is the plasma frequency, and vTe =√

2kBTe/me is the electron thermal speed, and

1/ls ≡
1

k

(
dk‖

dz

)
z=zs

=
cos2 θ − b2g sin

2 θ

λ cos θ(1 + b2g)
1/2

(3)

is the magnetic shear length29. The denominator for the final
equality in Eq. (2) has been simplified further as a result of
me/mi << 1 and Te = Ti.

Substitution of the k and θ dependence into Eq. (2) indi-
cates that both θ < θc ≡ tan−1(1/bg) and kλ .

√
2 are

required for an instability. Note ∆′ is a monotonically in-
creasing function of θ that is not bounded by θc. At θ = θc
the resonance surface moves to z = ±∞ while ls → ∞. For
convenience we re-express the collisionless growth rate of Eq.
(2) in terms of the ion cyclotron frequency, Ωci = eB0/mi,
defined with respect to the reconnecting field B0:

γ

Ωci
≈
kd3e(mi/me)∆

′
√
βe(1 + b2g)

2
√
πls

. (4)

B. Extension of Two-fluid Tearing Theory to Oblique
Modes

To treat oblique modes, we extend the collisionless two-
fluid tearing theory applicable to current sheet systems with an
arbitrary guide field and β > 2me/mi as developed by Fitz-
patrick and Porcelli30. Ref. 31 also independently worked on
the same problem for a collisional plasma with a large guide
field. More recent works on the topic, including a treatment
of electron/ion gyroviscosity can be found in Refs.32–34. The
present work does not consider gyroviscosity in the theory or
simulations.

The details of the derivation are presented in the Appendix
where we show that the inner layer equations for an oblique
tearing mode produce the same eigenvector equation as the
well-known symmetric mode if one neglects the equilibrium
current gradient (J ′

y0 ≡ ∂Jy0/∂z = ∂(ŷ ·J(0))/∂z) contribu-
tion to the inner layer. However, this effect may be significant
as oblique resonance layers lie in regions where J ′

y0 6= 0. It
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was shown by Ref. 40 that the inclusion of J ′
y0 modifies the

tearing growth rate in resistive MHD. The Appendix presents
details on the incorporation of J ′

y0 into the inner layer equa-
tions and the resulting change in the tearing eigenvector equa-
tion. A formal solution is left for a subsequent publication
as the emphasis of this paper is on the comparison between
two-fluid and kinetic simulations of oblique tearing. Here, we
simply state the growth rate without the J ′

y0 contribution in
the small ∆′ regime, which is valid when w∆′ < 1, where
w = d2e∆

′/(2
√
π) is the width of the collisionless tearing

layer according to Ref. 29. Inserting the values from Table I
into w∆′ for mi/me = 100, we obtain w∆′ = 0.1− 0.7 over
θ = 0◦−θcr, indicating a regime of small-to-intermediate ∆′.

After accounting for the normalizations used in Ref. 30
(see the Appendix), we finally arrive at the expression for the
oblique tearing growth rate for small ∆′ and β << 1 based
on their Eq. (78):

γ(2fl)

Ωci
=
kd3e(mi/me)∆

′
√
βe(1 + b2g)

√
2πls

, (5)

Comparing Eqs. (4) and (5) indicates that in the limit of small
∆′ and β << 1 the growth rate from two-fluid theory has
the same parametric dependence as that of kinetic theory and
differs from it by a numeric constant: γ(2fl)/γKin =

√
2/π.

For an arbitrary ∆′, one must use Eq. (95) of Ref. 30 or
Eq. (73) of Ref. 31 to calculate the growth rate. However, for
the parameters considered in this manuscript both small and
arbitrary∆′-approaches yield the same growth rates.

By incorporating hyperresistivity (ηH ) into the theory, one
can determine where the transition into the regime of colli-
sionless tearing occurs. For ηH 6= 0, the Fourier transformed
form of the governing equation for the inner (tearing) layer
(Eq. (71) of Ref. 30) changes to

∂

∂r

[
r2

1 + r2 + r4η̄H

∂Z̄

∂r

]
−Q2(1 + c2βr

2)Z̄ = 0, (6)

where r = pde is the dimensionless momentum, Z̄ is the
Fourier transformation of the eigenfunction Z (Z is the per-
turbation in the guide field or plasma pressure due to the
tearing), Q = γ/(kdβ) is the rescaleded growth rate, and
η̄H = ηH/γd

4
e. The parameter η̄H naturally arises if one

uses a heuristic argument to replace the effective skin depth
δ = (d2e + η/γ)1/2 of Ref. 31 with its hyperresistive coun-
terpart defined as δ = (d4e + ηH/γ)

1/4 = de(1 + η̄H)1/4.
Comparing the r2 to r4η̄H term in the denominator of Eq. (6)
reveals the dissipation scale: lH ≡

√
ηH/γd2e. The transi-

tion into the collisionless regime occurs when lH ≤ w, which
yields the following critical hyperresistivity:

ηcrH = γd2ew
2 =

γ∆′2d6e
4π

. (7)

We label the regime where lH ≤ w collisionless and lH > w
collisional.

One can further evaluate Eq. (7) by inserting the definitions
of ∆′, ls, and γ (Eqs. (1), (3), and (5), respectively). The

resulting expression is strictly in terms of the known quanti-
ties such as k, bg and θ. Thus, for any hyperresistive two-
fluid system, we can determine a priori where the collision-
less regimes occurs. This result is important because it allows
us to select an ηH sufficiently small in order to compare with
collisionless kinetic simulations.

III. Description of the Computational Models

We employ a two-fluid model of a fully ionized plasma
comprising isothermal electrons and adibatic ions. This is the
minimal two-fluid model that still contains the physical effects
relevant for tearing in the weakly collisional regimes. The fol-
lowing equations comprise the two-fluid system:

∂n

∂t
+∇ · (nu) = 0,

(8)
∂ (nu)

∂t
+∇ · [n(vivi + veve) + pĪ+ πi + πe] = J×B,

(9)

E+ ve ×B+
me

mi

(
∂ve

∂t
+ ve · ∇ve

)
= − 1

n
∇ · (peĪ+ πe) + ηJ,

(10)

n

[
∂Ti
∂t

+ vi · ∇Ti + (Γi − 1)Ti∇ · vi

]
= πi : ∇vi −∇ · q,

(11)

where B = ∇ ×A and E = −∂A/∂t are the magnetic and
electric fields, A the vector potential, J = ∇×B the current
density, n the plasma number density, ve,i the electron and
ions flows, u = vi + (me/mi)ve the center-of-mass plasma
flow velocity, and Te,i the electron and ion plasma tempera-
tures. Both B and J are auxiliary variables calculated from
A. In writing the two-fluid MHD equations in this form, the
Weyl gauge has been chosen by explicitly setting the electro-
static potential to zero and absorbing any electrostatic E-field
that may arise into A35. Note that all the quantities in the
above equations have been non-dimensionalized by appropri-
ate combinations of the magnitude of the reconnecting field
B0, ion inertial length di = de(mi/me)

1/2, and a background
density n0. Thus, the simulation time is measured in terms of
an Alfvén transit time through one di: τa = di/va where va
is defined with respect the reconnecting field B0. This choice
also implies τaΩci = 1.

Periodic boundary conditions are imposed at the surfaces
intercepted by B(0) (n̂ = x̂, ŷ). For the direction normal to
B(0) (n̂ = ẑ), free-slip hard wall boundary conditions are
imposed on the ion/electron flow with n̂ · ∇(n̂ × vi,e) = n̂ ·
vi,e = 0 and conducting boundary conditions are imposed
on the EM fields: n̂ × E = n̂ × ∂A/∂t = 0. In addition,
n̂ · ∇Ti = 0.

Basic kinematic closures with spatially-uniform and con-
stant coefficients are assumed for the electron and ion stress
tensors πi ≡ −µ∇vi and πe ≡ −ηHn∇ve, and heat flux
q = −κ∇Ti where µ and ηH are kinematic ion and electron
viscosity (hyperresistivity for electrons), κ is the heat conduc-
tivity, and η is the plasma resistivity. The chosen values are
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set low enough to provide necessary dissipation for numer-
ical stability without causing too much diffusion. Note the
assumption of isothermal electrons neglects the viscous heat-
ing of the electron fluid due to hyperresistivity. However, the
resulting leak in the total energy is completely negligible for
the values of ηH employed in the present simulations.

Eqs. (8)–(11) along with Ampère’s law, ∇×∇×A = J,
are solved in a slab geometry using the high order spectral
element multi-fluid modeling framework HiFi22. Spatial dis-
cretization is implemented with spectral elements where both
the number of elements (or cells) (nx, ny, nz) and order of the
polynomial representation for the nodal/modal basis functions
np are specified. The effective grid resolution is the product
of the two quantities (Nx, Ny, Nz) = np × (nx, ny, nz). The
time-stepping algorithm is implemented with the second order
backward differencing (BDF2) method36.

The fully kinetic simulations were performed with the
Particle-in-cell code VPIC37. As the kinetic model was de-
scribed in Ref. 15, we omit its details in this section. The
specific simulation parameters for both models are presented
in section IV.

IV. Two-fluid Simulations of Oblique Tearing

A. Setup

The analytic form of the equilibrium is given in section II A.
For each simulation, the equilibrium is rotated about ẑ by a
specific θ to single out the resonance surface of one particu-
lar oblique mode, reducing the problem to 2D. The simula-
tion domain has dimensions Lx × Lz = (2π × 2π)di with
λ = 0.5di. The geometry admits modes with kλ ≥ 0.5.
Longer-wavelength modes are excluded because PIC simu-
lations indicate the fastest growing tearing modes to have
kλ ≈ 0.5. We verified with two additional two-fluid sim-
ulations with an Lx twice and three times that of the origi-
nal setup that kλ ≈ 0.5 is still fastest even though longer-
wavelength modes (kλ < 0.5) are allowed.

The physical parameters for the simulations match those
from Ref. 15. The chosen regime of βe ∼ 0.01 − 0.2
regime is relevant to the solar wind and corona, and plane-
tary magnetosphere because of the weak magnetic shear an-
gles it produces. The first three rows of Table I summarize
the key physical parameters. The uniform component of the
guide field is set to bg = 1, 2.5, 4, and 10. The scans at
bg = 1 − 4 have Te = 0.09, yielding βe = 0.09, 0.025,
and 0.01, respectively. The scan at bg = 10 has Te = 0.9
(βe = 0.02) to ensure ρs > di. The ion-to-electron mass ra-
tio mi/me = 100 (di/de = 10). The dissipation coefficients
are set to µ = 10−4, ηH = 10−7, κ = 10−4, and η = 0.
Partial convergence tests were conducted with κ = 10−6 and
10−5, µ = 10−5 and mi/me = 400. Two additional full
scans at ηH = 2.2 × 10−5 and 10−6 as well as partial scans
at certain oblique angles with ηH up to 10−3 were also run
to chart the dependence on ηH . The kinetic simulations have
ωpe/Ωce = 2 where Ωce = (mi/me)Ωci is the electron gyro
frequency.

Tearing is seeded with a sum over sinusoidal harmon-
ics: δAy = δ

∑10
n=1 cos(2πnx/Lx)cos(πz/Lz), spanning a

TABLE I. The key simulation parameters for the oblique tearing
scans with mi/me = 100. The ranges in the ratios with w reflect
the span of ∆′ over θ = 0◦ − θcr . The spectrum of oblique angles
(θ) unstable to tearing shrinks as bg increases. Ratios of the width of
the collisionless tearing layer w to ion and electron gyro radii, ρi and
ρe, are included for reference.

bg 1 2.5 4 10
βe 0.09 0.025 0.01 0.02
θc 45◦ 22◦ 14◦ 5.7◦

w/de 0.17-0.40 0.17-0.40 0.17-0.40 0.17-0.40
w/ρi 0.06-0.1 0.1-0.25 0.2-0.4 0.1-0.3
w/ρe 0.6-1 1-2.5 2-4 1-3
ρe/de 0.30 0.16 0.10 0.04

range of kλ = 1/2 → 5 to prevent biasing any particular
mode. For the 2D simulations featured in this section, only the
perturbed quantities are evolved while the equilibrium fields
are kept static in time. This assures an accurate characteriza-
tion of the effect of dissipation on the growth rates because it
prevents the hyperresistive decay of the equilibrium gradients
that feed the tearing instability. Typical resolutions employ a
sufficiently high number of 3rd or 4th order elements with a
non-uniformly distributed grid along ẑ to produce 8–11 grid
points per de inside the current sheet for ηH < 10−6 and 4–8
grid points per de for ηH ≥ 10−6.

B. Results

Figure 1 shows the linear growth rates from the HiFi two-
fluid simulations with ηH = 10−7 ( dashed blue with o),
VPIC kinetic simulations15 (dashed red with C), kinetic the-
ory (solid red) and two-fluid theory (solid blue). The VPIC
results15are based on a series of 1D Fourier transformations
of Bz averaged over the entire thickness of the sheet (di). Re-
call Bz = 0 initially and hence, it can only grow as a result
of tearing. The growth rates from HiFi are computed in two
ways: (1) by following the evolution of the magnetic energy
component, Uz =

∫
B2

zdV , and (2) computing the FFT ofBz .
These two approaches for estimating the growth rate agree to
better than 5% except for a few cases with a large θ that are
plotted with an error bar to represent the standard deviation
between the two calculations. The uncertainty in the VPIC
data, shown for bg = 10, is represented by the shaded gray
region in Fig. 1d.

The figure shows that the most unstable modes from the
two-fluid simulations are oblique with kλ = 0.5, correspond-
ing to a single X-point configuration, in agreement with VPIC
simulations15 and reduced MHD21. For bg > 1 oblique modes
grow significantly faster than the parallel mode. Furthermore,
the oblique modes become increasingly more unstable than
the symmetric mode in the large guide field limit as evidenced
by the trends in Figures 1c and 1d. At bg = 10 (Fig. 1d), the
peak growth rate (at θ = 3−4◦) is almost twice that at θ = 0◦

for both HiFi and VPIC. The peak growth rates from HiFi oc-
cur at similar locations to those from VPIC: θ = 20 − 30◦

for bg = 1, θ = 10◦ for bg = 2.5, θ = 5 − 10◦ for bg = 4,
and θ = 3 − 4◦ for bg = 10. As predicted by the theory,
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FIG. 1. Normalized linear oblique tearing growth rates, γ/Ωci, as a function of the oblique angle θ from HiFi two-fluid simulations (dashed
blue with 4 ), VPIC kinetic simulations by Ref. 15 (dashed red with C ), two-fluid theory (solid blue), and linear kinetic theory (solid red)
for mi/me = 100 and (a) bg = 1, (b) bg = 2.5, (c) bg = 4, and (d) bg = 10. The range of the horizontal axis is decreased with increasing
bg (decreasing θc) for clarity. The blue error bars indicate cases where the FFT and magnetic energy calculations of the growth rates differ by
more than a few percent. The uncertainty in the VPIC data, shown for bg = 10, is represented by the shaded gray area.

HiFi growth rates are consistently lower than those from the
VPIC kinetic simulations across the whole θ spectrum. For
bg ≤ 2.5, the offset between HiFi and kinetic simulations is
25–30%, which is comparable to the 20% offset between the
theoretical traces. For bg = 4 and 10 the growth rates from the
two simulated models differ by as much as a factor of two for
certain oblique angles. Both theories produce a flatter oblique
spectrum and underestimate the oblique tearing growth rates.
A possible reason for why this is the case in two-fluid theory
is the exclusion of the finite equilibrium current gradient J ′

y0

from the inner layer equations (see Ref. 40 for a treatment
of this effect in resistive MHD) . An analysis of the modified
inner layer equations as well as the resulting change in the
tearing eingenvector equation is presented in the Appendix.
There is a fair agreement between HiFi and two-fluid theory
at θ = 0◦. Overall, the growth rates from the theory and sim-
ulations of the two models are within a factor of two of each

other and the HiFi two-fluid simulations demonstrate that the
fastest tearing modes in a force-free current sheet are oblique.

Sensitivity to hyperresistivity has been checked with scans
over ηH = 4× 10−8 − 10−3 that spans collisionless to colli-
sional regimes for bg = 1− 10. For each value of ηH and bg,
a single simulation with the oblique mode near or at the max-
imum growth rate was performed. The results are plotted in
Figure 2. The dashed blue, black, red, and green traces repre-
sent the linear growth rates as a function of ηH for bg = 1, 2.5,
4, and 10, respectively. All four scans show a convergence of
growth rates in the vicinity of ηH = 10−7, indicating a tran-
sition into the collisionless regime. Inserting the exact values
of ∆′ and γ into the theoretical prediction by Eq. (7) yields
ηcrH = 1− 2× 10−7, which agrees with the numerical results.
In the collisional regime, the observed linear growth rates for
the oblique modes vary as γ ∝ η

0.13−1/6
H while those for the
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FIG. 2. The growth rates, γ/Ωci, as a function of the hyperre-
sistivity (ηH) for bg = 1, 2.5, 4, and 10 over the range ηH =
4 × 10−8 − 10−3. Growth rates converge for ηH ≤ 10−7, indi-
cating the transition into the collisionless regime. The shaded region
represents the theoretical prediction for where collisionless regime
should occur based on Eq. (7).

symmetric mode (θ = 0◦) vary as γ ∝ η
1/4
H (not shown here).

Thus, in the collisional regime the dependence on hyperresis-
tivity is weaker for oblique modes than the standard tearing
mode. The 1/4-dependence at θ = 0◦ agrees with that re-
ported by Ref. 38 for electron MHD tearing.

The progression of the oblique spectrum from collisionless
to collisional regimes for bg = 2.5 (top) and 4 (bottom) is
shown in Figure 3. The red, green, black, and blue traces cor-
respond to ηH = 10−7, 10−6, 8 × 10−6, and 2.2 × 10−5,
respectively. In both cases, as the dissipation is raised, the
peaked spectrum flattens and the location of the peak growth
rate increasingly shifts toward θ = 0◦ until γ becomes a
monotonically decreasing function of θ at ηH & 10−5 (in-
side the collisional regime). This result is consistent with the
above finding that oblique growth rates have a weaker depen-
dence on ηH inside the collisional regime.

In Figure 4 we plot the field-aligned (parallel) component of
each term in Ohm’s law (Eq. (10)) along ẑ to determine which
terms generate the non-ideal (reconnection) electric field E‖.
Shown are profiles from bg = 2.5, θ = 5◦ (left panel) and
bg = 4, θ = 2◦ (right panel) through the X point, spanning
a distance a little over a di at a time when Bz ∼ 10−5. The
thick solid vertical black line marks the location of the reso-
nance surface for each case and the dashed vertical black lines
demarcate the equilibrium current layer. The horizontal black
trace with the upright triangles represents the sum of all terms,
which must add up to zero for momentum conservation. The
small bumps that appear in this trace are an artifact of the post-
processing and have no physical meaning. The multiplicative
factors appearing in front of each term in Eq. (10) are omitted
from the legend for brevity and the magnitudes are normalized
to unity. The behavior is qualitatively the same for both cases
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FIG. 3. Linear growth rates (γ/Ωci) as a function of the obliquity
(θ) for various values of ηH at (a) bg = 2.5 and (b) bg = 4. As ηH
is raised from the collisionless value (10−7), the peaked spectrum
flattens and the location of the peak growth rate increasingly shifts
toward θ = 0◦. At ηH = 2.2× 10−5 (inside the collisional regime)
the growth rate peaks at θ = 0◦ and monotonically decreases as a
function of θ

.

and is representative of the parallel electron force balance for
all bg and θ. The non-ideal electric field (blue) at the X-point
is mainly supported by ∂ve‖/∂t (red). As the mode grows the
hyperresistive contribution embedded in ∇ · Pe‖/n (purple)
also begins to support E‖ (left panel). Outside the resonance
layer the contribution from the time derivative component of
the electron inertia decreases while that from the hyperresis-
tivity increases. The advective piece, ve · ∇ve‖ (yellow), also
registers some activity in this region. Beyond this zone, sev-
eral de’s away from the X-point E‖ vanishes.

V. Summary

We have performed two-fluid simulations of the oblique
tearing instability in a force-free current sheet equilibrium
with a guide field up to ten times the in-plane reconnecting
field. By rotating the equilibrium, we single out a particu-
lar oblique tearing mode and investigate its linear evolution in
2D. Within the collisionless regimes, our simulations show the



7

FIG. 4. Parallel (field-aligned) electron force balance. Shown are
profiles of each term in the generalized Ohm’s law, Eq. (10), for
(a) bg = 2.5, θ = 5◦ and (b) bg = 4, θ = 2◦ at a time when
Bz ∼ 10−5. The blue line corresponds to the non-ideal parallel
electric field E‖, the red and yellow lines to electron inertia terms
∂ve‖/∂t and ve ·∇ve‖, the purple line to the electron pressure tensor
∇·Pe‖/n, and lastly the black line with 4 to the sum of all the terms.
Momentum conservation requires a sum of zero. The multiplicative
factors appearing in front of each term in Eq. (10) are omitted from
the legend. The time derivative of the electron inertia (∂ve‖/∂t) is
the primary generator of E‖ due to tearing at the time shown in the
figures.

oblique tearing modes to be most the unstable for large guide
fields (bg ≥ 1), which agrees with the kinetic simulations15.
This trend is more pronounced at stronger guide fields. For
example, with bg = 10 the two-fluid simulations indicate that
the oblique modes with a resonance layer on the edge of the
sheet grow nearly twice as fast as the mode with a resonance
layer in the center of the sheet (symmetric mode). Two-fluid
growth rates are consistently lower than their kinetic coun-
terparts across the whole θ spectrum, which agrees with the
theoretical trend (see below).

In the collisional regime, as the hyperresistive dissipation

is raised, the peak growth rate shifts further toward the sym-
metric mode (θ = 0◦). When the dissipation scale lH exceeds
de, the oblique spectrum becomes a monotonically decreas-
ing function of obliquity θ with the maximum at θ = 0◦. This
is consistent with our finding that the oblique tearing modes
grow at a slower rate (weaker ηH -dependence) than the sym-
metric mode as ηH is raised inside the collisional regime.

We have complemented the numerical effort by extending
the two-fluid theory of tearing30,31 for the symmetric mode
to oblique modes. In the limit of bg >> 1 and a negligible
gradient in both the equilibrium current Jy0 and guide field
B

(0)
y ≡ ŷ ·B(0), the equations that describe the singular layer

reduce to the same linearized form as those for the collision-
less symmetric tearing mode. The resulting two-fluid theory
differs from the kinetic theory only by

√
2/π ( 20%). This

difference is comparable to the offset observed between two-
fluid and kinetic simulations at bg = 1 − 2.5 and bg = 10.
Both theories produce a flatter oblique spectrum and underes-
timate the oblique tearing growth rates. For non-zero gradient
in B(0)

y , the change in the growth rates can be estimated based
on Ref. 39. For bg > 1, growth rates should be enhanced by
a small correction: ∼ 1 + b−2

g , amounting to an increase of
16%, 6%, and 1% for bg = 2.5, 4, and 10, respectively.

While neglecting the gradient in B(0)
y is a fairly good ap-

proximation for bg >> 1, the effect of the finite equilibrium
current gradient, J ′

y0, could be significant. This effect results
in a correction to the tearing growth rate in resistive MHD40.
Since J ′

y0 feeds the tearing instability, it is possible a more
pronounced oblique spectrum could emerge upon incorporat-
ing it back into the inner layer equations. As shown in the
Appendix, the additional term due to J ′

y0 is significant only
for modes in the mid-obliquity range, drops sharply outside
this range, and grows with bg . These findings are consistent
with the results of the two-fluid simulations. Also presented in
the Appendix are the asymptotic limits of the modified eigen-
vector equation as a preview for the full treatment, which will
be the topic of a follow-up paper. As for why kinetic theory
predicts a flat oblique spectrum, this is a shortcoming of the
boundary layer theory and is presently not well understood.

Our simulations demonstrate that a two-fluid model cap-
tures the essential linear stage of the 3D tearing instability in
a force-free current sheet equilibrium. This provides a path
forward for the continuation of this work where we aim to in-
vestigate the influence of line-tied boundary conditions on the
nonlinear reconnection dynamics with both kinetic and two-
fluid descriptions and compare the results from the two mod-
els.
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A. Appendix

Fitzpatrick and Porcelli express the collisionless two-fluid
system in terms of the four-field equations41, which they
solve, using the standard boundary layer theory by splitting
the inner layer into two domains: an innermost region that
extends from reconnection scales to electron scales (z . de)
and a broader region that is matched to the usual MHD solu-
tion at z >> de. They carry out their analysis for small ∆′

(w∆′ < 1), large ∆′ (w∆′ >> 1), and arbitrary ∆′ where
w = d2e∆

′/(2
√
π) is the width of the collisionless tearing

layer according to Drake and Lee29.
In the presence of non-uniform perturbations along the

guide field (∂/∂y 6= 0) and ηH 6= 0, the dimensionless four-
field equations of Ref. 30 take on the following more general-
ized form:

∂ψe

∂t
= [φ, ψe] + dβ [ψ,Z]− dβbg

∂Z

∂y
+
∂Φes

∂y
− ηH∇4ψ,

(A1)

∂Ze

∂t
= [φ,Ze] + cβ [vy, ψ] + dβ [∇2

⊥ψ,ψ] + dβbg
∂∇2

⊥ψ

∂y

+ cβbg
∂vy
∂y

,

(A2)

∂∇2
⊥φ

∂t
= [φ,∇2

⊥φ] + [∇2
⊥ψ,ψ] + bg

∂∇2
⊥ψ

∂y
, (A3)

∂vy
∂t

= [φ, vz] + cβ [Z,ψ] + cβbg
∂Z

∂y
, (A4)

where Z is the perturbed component of the guide field scaled
by cβ ≡

√
βe/(1 + βe), Ze = Z − c2βd

2
e∇2

⊥Z, ψ is the flux
function such that B⊥ = ∇ψ × ŷ, ψe = ψ − d2e∇2

⊥ψ, vy is
the ion flow along the guide field, φ is the ion vorticity v⊥ =
∇φ× ŷ, and Φes = −bgφ is the electrostatic potential, where
bg >> 1 is assumed. ⊥ denotes the direction perpendicular
to the guide field (ŷ). [A,B] = ∇⊥A×∇⊥B · ŷ is the usual
Poisson bracket.

The dissipationless (ηH = 0) form of the above equations
was first derived by Grasso et. al.20. Note our coordinate con-
vention differs from that of Refs. 20, 30, 31, and 34 in that
the guide field is along ŷ instead of ẑ, the in-plane field is
along x̂ instead of ŷ, and the equilibrium gradients are along
ẑ instead of x̂. The coefficients cβ and dβ = dicβ reduce to√
βe/2 and

√
βe/2di, respectively for βe << 1. The ad-

ditional factor of 2 appears because Ref. 30 defines βe as
β̄e ≡ ΓeP

(0)
e /B2

0 , which is related to our βe in the following
way: β̄e = Γeβe/2 = βe/2 where Γe = 1 for isothermal
electrons.

Eqs. (A1)-(A4) take on the following linearized form af-
ter applying the general form for an oblique perturbation
ψ̃(x) = ψ̃(z)eγt+i(kxx+kyy) and the usual inner layer order-
ing ∂/∂z > kx, ky:

g

(
ψ̃ − d2eψ̃

′′ +
ηH
γ
ψ̃′′′′

)
= i

z̄

ls
(φ− dβZ)− i

kx
k
d2ej

′
y0φ,

(A5)

g

(
Z − c2βd

2
eZ

′′ +
c2β z̄

2Z

g2l2s

)
= idβ

(
z̄

ls
ψ̃′′ − kx

k
j′y0ψ̃

)
,

(A6)

gφ′′ = i
z̄

ls
ψ̃′′ − i

kx
k
j′y0ψ̃, (A7)

gvy = icβ
z̄

ls
Z, (A8)

where ′ denotes ∂/∂z, g = γ/k, j′y0 ≡ (d2iµ0/B0)J
′
y0

is the non-dimensionalized equilibrium current gradient, and
we note that when evaluating [A,ψ] + bg∂A/∂y = i(k ·
B(0)/B0)Ã + ikxψ̃A

′
0 in the vicinity of the resonance layer

the first term can be approximated as i(k ·B(0)/B0)Ã|z=zs '
ik(z − zs)Ã/ls = i(kz̄/ls)Ã for any perturbed scalar field
A = Ã+A0(z).

The fourth order term in Eqs. (A1) and (A5) arises due
to hyperresistive dissipation. In the limit of zero dissipation,
ηH = 0, the inner layer equations for an oblique tearing mode
as given by Eqs. (A5)–(A8) differ from those for the symmet-
ric tearing mode only in the terms proportional to j′y0 on the
RHS of Eqs. (A5)–(A7), which emerge out of the lineariza-
tion of the Poisson brackets containing ∇2ψ. These terms
are absent in the analysis for the symmetric mode for which
j′y0 = 0 at the resonance layer. However, as oblique modes
arise in regions with strong equilibrium current gradients, this
effect modifies the eigenvector equation. It was shown in Ref.
40 that the inclusion of a non-zero j′y0 modifies the tearing
growth rate for resistive MHD.

In the small ∆′ regime, the ion contribution to the inner
layer equations is neglected30, meaning all of the terms pro-
portional to φ as well as the last term on the left hand side of
Eq. (A6) (∝ c2βZ/g

2) are excluded. This makes Eq. (A7)
redundant. Note Eq. (A8) is decoupled from the system re-
gardless of this approximation. Then, the only remaining term
proportional to j′y0 appears on the RHS of Eq. (A6).

If j′y0 = 0, the remaining equations reduce to the same
eigenvector equation as in the case of symmetric tearing.
Hence, the rest of the analysis of Ref. 30 directly applies.
The oblique tearing growth rate for a small ∆′ and β << 1 as
given by Eq. (78) of Ref. 30 is

γ(2fl)τA =
kde∆

′di
√
βe√

2π
, (A9)

where di
√
βe/2 is substituted dβ in Ref. 30 and τA = ls/vA

is Ref. 30’s Alfvén time defined with respect to the total mag-
netic field. As our simulation time is in terms of τa = di/va =
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(Ωci)
−1, we carry out one additional step of arithmetic, using

the relation τa/τA = (di/ls)(vA/va) = (di/ls)
√
1 + b2g to

arrive at Eq. (5).
If j′y0 6= 0, the resulting eigenvector equation in the Fourier

domain becomes:

r2
∂2Z̄

∂r2
+

(
2r

1 + r2
− ifθ

)
∂Z̄

∂r
−Q2(1+c2βr

2)(1+r2)Z̄ = 0,

(A10)
where fθ = sin(2θ)cos(θ)(1+ bg2)de/(λls) is the additional
term that arises due to j′y0 6= 0. Inserting Eq. (3) (1/ls)
into fθ and going to the limit of bg >> 1 (θ << 1) yields
fθ = 2bgθ(1 − b2gθ

2)(de/λ
2). For bg = 10, this term has a

maximum at θ = 3◦ (and at θ = 9◦ for bg = 4), is of order
unity, and drops sharply outside the range θ = 2 − 4◦, con-
sistent with the trend from the simulations (Figure 1d). Thus,
the modes in the mid-obliquity range should be most affected.

The asymptotic limits of Eq. (A10) provide some insight.
In the r → 0 limit (supra de scales), the solution is a linear
combination of confluent hypergeometric functions, in con-
trast to Z̄ ∼ const + 1/r in the case of j′y0 = 0. The solution
in the r >> 1 limit, which corresponds to sub-de scales that
are more relevant for collisionless two-fluid tearing, remains
unchanged. The full analysis is left for a follow-up paper as
the focus of this paper is the comparison between the two-fluid
and kinetic simulations of oblique tearing.
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